Discussion Paper Series, 18(3): 41-60

# Proposing an Index of Domination in an international trade relation: An illustrative analysis for the trade activity conducted among the EU and the ENP countries 

Dimitris Kallioras<br>Department of Planning and Regional Development<br>University of Thessaly, Faculty of Engineering<br>dkallior@prd.uth.gr


#### Abstract

The paper proposes an Index of Domination (the DK Index) in order to help identifying the dominant part (i.e. country) in an international trade relation. The DK Index takes into account the exports (imports) shares of a country under consideration to (from) a partner country and the world and the imports (exports) shares of the partner country from (to) the country under consideration and the world. Taking into account the aforementioned shares, the DK Index can point out whether a country under consideration dominates over a partner country, in an international trade relation. Illustratively, the proposed index is applied to data that concern trade activity conducted among the EU and the ENP countries (the EU-ENP trade).


Key words: DK index, EU-ENP trade

October 2012

[^0]
## 1. Introduction

Newton (1687/1846) formulated (as a sequent of the well-known "apple incident") the "Law of Universal Gravitation" stating that every point (i.e. point-like) mass in the universe attracts every other point mass with a force that is directly proportional to the product of their masses and inversely proportional to the square distance between them (see Box 1) ${ }^{1}$. In the field of economics, Tinbergen (1962) ${ }^{2}$ suggested that the gravitational logic could be applied to international trade flows (see Box 2 and Figure 1). This model (the "gravity model"; in analogy to the "Law of Universal Gravitation") imprints, in empirical manner, the geographical (spatial) view of (international) trade activity. The gravity model has no theoretical underpinnings (Bergstrand, 1985), even though many theoretical justifications have been proposed (see the literature review provided by Evenett and Keller, 2002 and de Benedictis and Taglioni, 2011). Linnemann (1966) attempted to provide a theoretical basis for the gravity model using the general equilibrium theory (Walras, 1874/1954) as a benchmark. Analogous attempts have been made, inter alia, from Anderson (1979), on the basis of the Armington assumption (Armington, 1969), Krugman (1980) and Helpman and Krugman (1985), in an imperfect competition framework (Dixit and Stiglitz, 1977), Deardorff (1998), in a Heckscher-Ohlin framework (Heckscher, 1919; Ohlin, 1933/1966), and Eaton and Kortum (2002), in a Ricardian framework (Ricardo, 1817).

Box 1: The Law of Universal Gravitation
$F=G \frac{m_{1} m_{2}}{r^{2}}$
$F$ denotes the force between the masses
$G$ is a gravitational constant (see Gilles, 1997)
$m_{1}$ denotes the mass of the first point
$m_{2}$ denotes the mass of the second point
$r$ denotes the distance between the centers of the masses
Source: Adjustment from Newton (1687/1846)

[^1]Box 2: The gravitational logic in the field of economics

$$
\begin{aligned}
& F_{i j}=G \frac{m_{i}^{\alpha} m_{j}^{\beta}}{d_{i j}^{\theta}} \\
& { }_{i} \text { denotes the origin } \\
& { }_{j} \text { denotes the destination } \\
& F \text { denotes the flow from origin to destination } \\
& G \text { is a gravitational constant (see Gilles, 1997) } \\
& d \text { denotes the distance from origin to destination (usually measured center to center) } \\
& m_{i} \text { denotes the size of the origin (usually expressed in terms of population or GDP) } \\
& m_{j} \text { denotes the size of the destination (usually expressed in terms of population or GDP) } \\
& \alpha, \beta, \theta \text { are coefficients }
\end{aligned}
$$

Source: Adjustment from Tinbergen (1962)

Figure 1: The gravitational logic in the field of economics


Source: Keeble et al. (1981: 212) in Copus (1999: 4)

The gravity model provides "some of the clearest and more robust empirical findings in economics" (Leamer and Levinsohn, 1995: 1384) being able to "identify extreme cases of artificial barriers to trade, the role of distance and the effects of membership in various customs union and trade preference groups" (Taplin, 1967: 442). Being an expression of proximity and (potential) accessibility (connectivity), the gravity model is, indeed, considered to be something like a workhorse in empirical international trade literature (Deardorff, 1998; Baldwin and Taglioni, 2006; see the survey of the recent empirical literature provided by Kepaptsoglou et al., 2010). However - and without detracting its overall contribution, in any sense - it should be noted that the gravity
model presents one (serious) limitation; it is unable to point out the dominant part in an economic relation. As regards international trade relations in particular, the detection of the dominant part (i.e. country) is an extremely important task since such type of relations have not only geographical dimension but also political implications (which may have an impact on geography).

The objective of the present paper is to propose an index (hereinafter: the DK Index ${ }^{3}$ ) for the detection of the dominant part (i.e. country) in an international trade relation, aspiring to provide a valuable insight to the empirical international trade literature. The DK Index takes into account the exports (imports) shares of a country under consideration to (from) a partner country and the world and the imports (exports) shares of the partner country from (to) the country under consideration and the world. Taking into account the aforementioned shares, the DK Index can point out whether a country under consideration dominates over a partner country, in an international trade relation. Illustratively, the proposed index is applied to data that concern trade activity conducted among the EU and the ENP4 countries (the EU-ENP trade).

The structure of the paper is as follows: Section 1 is introductory and states the objective of the paper. Section 2 presents the DK Index. Section 3 provides an illustrative analysis for the EU-ENP trade activity. Section 4 offers the conclusions.

## 2. Presentation of the DK Index

The seminal contributions of Nyusten and Dacey (1961 and 1968) ${ }^{5}$ provide the methodological basis for the detection (demarcation) of the dominant spatial (economic) units in a trade relation ${ }^{6}$, stating that a spatial unit under consideration is dominated by a partner spatial unit when: (a) its maximum outflow is directed towards the partner country, and (b) the total inflows of the partner country are greater than its own total inflows. Depending on the conditions exist, the countries are divided into dominant (i.e. dominate over all countries), dominated (i.e. dominated by all countries) and intermediate (i.e. dominate over some countries and dominated by some other countries).

[^2]Grasland (2011), in the framework of the EuroBroadMap research project ${ }^{7}$, adjusts the aforementioned methodology to the international trade relations, trying to detect dominant countries (separately for exports and imports flows). Searching for possible variations of the initial methodology (i.e. "relaxing" or changing (slightly) the initial criteria), Grasland (2011: 6) supports that "it is not possible to define a priori the best mathematical solution; it is rather the comparison of results that matter, and not the research of an "ideal" solution". Though realistic, this position is somehow problematic since it "emits" rather mixed "signals"...

The proposed DK Index, drawing, mainly, its origin from the contribution made by Grasland (2011), aspires to provide a valuable insight to the empirical international trade literature. The DK index is estimated separately for exports and imports, taking into account the exports (imports) shares of a country under consideration to (from) a partner country and the world and the imports (exports) shares of the partner country from (to) the country under consideration and the world, respectively. Depending on the conditions exist, it is possible for a country under consideration to dominate over a partner country, to be dominated by a partner country or to retain a neutral relation with a partner country (i.e. neither to dominate over nor to be dominated by a partner country), in an international trade relation.

Concerning exports flows (see Box 3), in particular, a country under consideration dominates over a partner country (XD) when: (a) the percentage share of its exports to the partner country in relation to its total exports is lower than a specified threshold, and (b) the percentage share of the corresponding partner country imports' to its total imports is greater than a specified threshold. In contrast, a country under consideration is dominated by a partner country ( Xd ) when: (a) the percentage share of its exports to the partner country in relation to its total exports is greater than a specified threshold, and (b) the percentage share of the corresponding partner country imports' to its total imports is lower than a specified threshold. The relation between a country under consideration and a partner country is neutral in any other case.

Concerning imports flows (see Box 4), in particular, a country under consideration dominates over a partner country (MD) when: (a) the percentage share of its imports from the partner country in relation to its total imports is lower than a specified threshold, and (b) the percentage share of the corresponding partner country exports' to its total exports is greater than a specified threshold. In contrast, a country under consideration is dominated by a partner country ( Md ) when: (a) the percentage share of its imports from the partner country in relation to its total imports is greater than a specified threshold, and (b) the percentage share of the corresponding partner country exports' to its total exports is lower than a specified threshold. The relation between a country under consideration and a partner country is neutral in any other case.

[^3]Box 3: The DK Index: Exports' domination conditions
$X D_{c_{-} p, t}: \frac{X V_{c_{-} p, t}}{X V_{c_{-} w, t}}<X V^{*} \& \frac{M V_{p_{-} c, t}}{M V_{p_{-} w, t}}>M V^{*}$
or
$X d_{c_{-} p, t}: \frac{X V_{c_{-} p, t}}{X V_{c_{-} w, t}}>X V^{*} \& \frac{M V_{p_{-} c, t}}{M V_{p_{-}, t}}<M V^{*}$
$X V$ denotes exports values
$M V$ denotes imports values
$X V^{*}$ is a threshold for exports values
$M V^{*}$ is a threshold for imports values
$c$ denotes country under consideration
$p$ denotes a partner country
$w$ denotes the world economy
$t$ denotes the year under consideration
$X D$ indicates that when these conditions are met, country $c$ dominates over country $p$ (alternatively, country $p$ is dominated by country $c$ ) in terms of exports
$X d$ indicates that when these conditions are met, country $c$ is dominated by country $p$ (alternatively, country $p$ dominates over country $c$ ) in terms of exports

Source: Author's elaboration

Box 4: The DK Index: Imports' domination conditions

$$
\begin{aligned}
& M D_{c_{-} p, t}: \frac{M V_{c_{-} p, t}}{M V_{c_{-} w, t}}<M V^{*} \& \frac{X V_{p_{-} c, t}}{X V_{p_{-} w, t}}>X V^{*} \\
& M d_{c_{-} p, t}: \frac{M V_{c_{-}, t}}{M V_{c_{-} w, t}}>M V^{*} \& \frac{X V_{p_{-} c, t}}{X V_{p_{-} w, t}}<X V^{*}
\end{aligned}
$$

$X V$ denotes exports values
$M V$ denotes imports values
$X V^{*}$ is a threshold for exports values
$M V^{*}$ is a threshold for imports values
$c$ denotes country under consideration
$p$ denotes a partner country
$w$ denotes the world economy
$t$ denotes the year under consideration
$M D$ indicates that when these conditions are met, country $c$ dominates over country $p$ (alternatively, country $p$ is dominated by country $c$ ) in terms of imports
$M d$ indicates that when these conditions are met, country $c$ is dominated by country $p$ (alternatively, country $p$ dominates over country $c$ ) in terms of imports

The underlying rationale for the suggestion of the DK Index is that it is "easier" for a country under consideration to change trade partner when the trade relation (association) with a partner country is not close enough (i.e. the exports (imports) share to (from) a partner country is lower than a specified threshold). When this is not true for the partner country (i.e. the corresponding imports (exports) share from (to) the country under consideration is greater than a specified threshold), the country under consideration is the dominant one. Of course, at this point it has to be stated that the specification of the threshold is a totally subjective issue. It depends on the perception of each country with respect to its trade policy (and on issues relating to international economic relations (conditions), in general). Thus, it is likely for both countries to consider themselves dominant in a bilateral international trade relation.

## 3. Detecting the dominant part in the EU-ENP trade relations, using the DK Index

Illustratively, the proposed DK Index is applied to data that concern the EU-ENP8 ${ }^{8}$ trade activity (see Figure 2 for a depiction of the EU-ENP area). Since the ENP countries operate under conditions of "neighborhood Europeanization" (see Axt et al., 2007 and Schimmelfennig, 2012 for a discussion about the "Europeanization" debate), the study of the EU-ENP trade activity is in a position to provide valuable insight to both (economic integration) theory and policy-making.

The exercise utilizes trade data derived from the United Nations (UN) COMTRADE database ${ }^{9}$ and covers the period between 2000 and 2010. Trade data refer to the primary and the secondary sector of production. The requisite - for the interpretation of the DK Index - threshold is set to be at the level of $0.5 \%$ and the countries under consideration are the ENP countries, in any EU-ENP country pair. Thus, concerning exports flows, an ENP country dominates over an EU country (XD) when: (a) the percentage share of its exports to the EU country in relation to its total exports is lower than $0.5 \%$, and (b) the percentage share of the corresponding EU country imports' to its total imports is greater than $0.5 \%$. In contrast, an ENP country is dominated by an EU country (Xd) when: (a) the percentage share of its exports to the EU country in relation to its total exports is greater than $0.5 \%$, and (b) the percentage share of the corresponding EU country imports' to its total imports is lower than $0.5 \%$.

[^4]Figure 2: The EU-ENP area


Source: Author's elaboration

The relation between an ENP country and an EU country is neutral in any other case. Moreover, concerning imports flows, an ENP country dominates over an EU country (MD) when: (a) the percentage share of its imports from the EU country in relation to its total imports is lower than $0.5 \%$, and (b) the percentage share of the corresponding EU country exports' to its total exports is greater than $0.5 \%$. In contrast, an ENP country is dominated by an EU country (Md) when: (a) the percentage share of its imports from the EU country in relation to its total imports is greater than $0.5 \%$, and (b) the percentage share of the corresponding EU country exports' to its total exports is lower than $0.5 \%$. The relation between a country under consideration and a partner country is neutral in any other case.

Studying, for example, the exports flows from Algeria to Austria for the year 2000 - and given the threshold of $0.5 \%$ - it emerges that Austria is the dominant country, according to the DK Index. Algeria exports to Austria products that value $\$ 183,042,434$. The total (world) exports of Algeria value $\$ 22,031,287,644$. Thus, the Algerian exports to Austria are the $0.831 \%$ of its total exports (i.e. above the threshold). Austria imports from Algeria products that value $\$ 183,042,434$. The total (world) imports of Austria value $\$ 68,373,911,913$. Thus, the Austrian imports from Algeria are the $0.268 \%$ of its total imports (i.e. below the threshold). In another example, studying the imports flows of Algeria from Austria for the year 2000 - and given the threshold of $0.5 \%$ - it emerges that Austria is, again, the dominant country, according to the DK Index. Algeria imports from Austria products that value $\$ 58,545,760$. The total (world) imports of Algeria value $\$ 9,152,077,226$. Thus, the Algerian imports from Austria are the $0.640 \%$ of its total imports (i.e. above the threshold). Austria exports to Algeria products that value $\$ 58,545,760$. The total (world) exports of Austria value $\$ 63,674,999,062$. Thus, the Austrian exports to Algeria are the $0.092 \%$ of its total exports (i.e. below the threshold).

So, for both exports and imports flows, Austria is the dominant country in the AlgerianAustrian trade activity according to the DK Index (and given the threshold of $0.5 \%$ ). Following the same logic, the dominant country, if there is such (i.e. if the relation is not neutral), in any EU-ENP country pair can be detected (see Tables A1 and A2, in the Appendix). The rough visualization of the results derived from the DK Index ${ }^{10}$ for the years 2000 and 2010 (see Tables A3, A4, A5 and A6, in the Appendix) indicates that for the vast majority of the EU-ENP country pairs either there is a neutral relation or the EU countries dominate over the ENP countries. Thus, it seems that the EU-ENP trade activity tends to consolidate a spatial pattern of unequal relations between the EU countries and their neighbors.

## 4. Conclusions

The present paper proposes the DK Index for the detection of the dominant part (i.e. country) in an international trade relation, aspiring to provide a valuable insight to the empirical international trade literature. Taking into account the exports (imports) shares of a country under consideration to (from) a partner country and the world and the imports (exports) shares of the partner country from (to) the country under consideration and the world, the DK Index can point out whether a country under consideration dominates over a partner country, in an international trade relation. The underlying rationale for the suggestion of the DK Index is that it is "easier" for a country under consideration to change trade partner when the trade relation (association) with a partner country is not close enough (i.e. the exports (imports) share to (from) a partner country is lower than a specified threshold). When this is not true for the partner country (i.e. the corresponding imports (exports) share from (to) the country under consideration is greater than a specified threshold), the country under consideration is the dominant one. Applied, illustratively, to data that concern trade activity conducted among the EU and the ENP countries (the EU-ENP trade), for the period 2000-2010, the DK Index indicates that for the vast majority of the EU-ENP country pairs either there is a neutral relation or the EU countries dominate over the ENP countries. This is an important finding for both (economic integration) theory and policy-making since it seems that the EU-ENP trade activity tends to consolidate a spatial pattern of unequal relations between the EU countries and their neighbors.

[^5]
## Acknowledgments

The research was supported by the Project Sharing KnowledgE Assets: InteRregionally Cohesive NeigHborhoods (SEARCH) within the $7^{\text {th }}$ European Community Framework Programme FP7-SSH-2010.2.2-1 (266834) European Commission.

The author would like to thank the SEARCH partners for their apt comments and suggestions. Special thanks go to Mr. Panagiotis Pantazis and to Professor George Petrakos for their valuable assistance. The usual disclaimer applies.

## Bibliography

ANDERSON J.E. (1979), A theoretical foundation for the gravity equation, American Economic Review, 69: 106-116.
ARMINGTON P. (1969), A theory of demand for products distinguished by place of production, International Monetary Fund Staff Papers, XVI: 159-178.
AXT H.-J., MILOSOSKI A., and SCHWARZ O. (2007), Europeanization - A Broad Field. Literature Review and Research Questions, Politische Vierteljahresschrift, 48(1): 136-149 (in German).
BALDWIN R. and TAGLIONI D. (2006), Gravity for dummies and dummies for gravity equations, NBER Working Paper Series, 12516.
BEAUGUITTE L. (2011), Graph theory and network analysis, in VAN HAMME G. and GRASLAND C. (2011), Divisions of the world according to flows and networks, FP7-SHS-EuroBroadMap, 5768.

BERGSTRAND J. H. (1985), The gravity equation in international trade: Some micro-economic foundations and empirical evidence, Review of Economics and Statistics, 67: 474-481.
COPUS A. (1999), A new Peripherality index for the NUTS III regions of the EU, ERDF / FEDER Study, 98/00/27/130.
DEARDORFF A. V. (1998), Determinants of bilateral trade: Does gravity work in a neoclassical world? in FRANKEL J. A. (ed): The regionalization of the world economy, Chicago: University of Chicago Press, 7-32.
DIXIT A. K. and STIGLITZ J. E. (1977), Monopolistic competition and optimum product diversity, American Economic Review, 67(3): 297-308.
DE BENEDICTIS L. and TAGLIONI D. (2011), The gravity model in international trade, in DE BENEDICTIS L. and SALVATICI L. (eds): The trade impact of EU preferential policies: An analysis through gravity models, Berlin: Springer, 55-89.
EATON J. and KORTUM S. (2002), Technology, geography and trade, Etrica, 70(5): 1741-1779.
EINSTEIN A. (1916), The foundation of the general theory of relativity, Annalen der Physic, 49(7): 769-822 (in German).
EVENETT S. J. and KELLER W. (2002), On theories explaining the success of the gravity equation, Journal of Political Economy, 110: 281-316.
GILLES G. T. (1997), The Newtonian gravitational constant: Recent measurements and related studies, Reports on Progress in Physics, 60(2): 151-225.
GRASLAND C. (2011), Nodal regions based on dominant flows, in VAN HAMME G. and GRASLAND C. (2011), Divisions of the world according to flows and networks, FP7-SHSEuroBroadMap, 3-12.
HECKSCHER E. (1919), The effect of foreign trade on the distribution of income, Ekonomisk Tidschrift, 497-512 (in Swedish).
HELPMAN E. and KRUGMAN P. R. (1985), Market structure and foreign trade: Increasing returns, imperfect competition and the international economy, Cambridge Mass.: MIT Press.
http://comtrade.un.org/db/, UN COMTRADE database (retrieved in May 2012).
KEPAPTSOGLOU K., KARLAFTIS M. G. and TSAMBOULAS D. (2010), The gravity model specification for modeling international trade flows and free trade agreement effects: A 10-year review of empirical studies, The Open Economics Journal, 3: 1-13.
KRUGMAN P. R. (1980), Scale economies, product differentiation and the pattern of trade, American Economic Review, 70: 950-959.
LEAMER E. E. and LEVINSOHN J. (1995), International trade theory: The evidence, in GROSSMAN G. and ROGOFF K. (eds): Handbook of International Economics, Amsterdam: North-Holland, 1339-1394.
LINNEMANN H. (1966), An econometric study of international trade flows, Amsterdam: North Holland.
NEWTON I. (1687/1846), Mathematical principles of natural philosophy, New York: Daniel Adee (translated by Motte A.).
NYUSTEN J. and DACEY M. (1961), A graph theory interpretation of nodal regions, Papers in Regional Science, 7(1): 29-42.
NYUSTEN J. and DACEY M. (1968), A graph theory interpretation of nodal regions, in BERRY B. and MARBLE D. (eds): Spatial analysis: A reader in statistical geography, Englewood Cliffs: Prentice-Hall, 407-418.
OHLIN B. (1933/1966), Interregional and international trade, Cambridge Mass.: Harvard University Press.
PÖYHÖNEN P. (1963), A tentative model for the volume of trade between countries, Weltwirtsaftliches Arciv, 90: 93-99.
RAVENSTEIN E. G. (1885), The laws of migration, Journal of the Statistical Society of London, 48(2): 167-235.
RICARDO D. (1817), On the principles of political economy and taxation, London: John Murray.
SCHIMMELFENNIG F. (2012), Europeanization beyond Europe, Living Reviews in European Governance, 7(1): 1-31.
TAAFFE E. J. and GAUTHIER H. L. (1973), Geography of transportation, Englewood Cliffs: Prentice Hall.
TAPLIN G. B. (1967), Models of world trade, IMF Staff Papers, 54(3): 433-455.
TINBERGEN J. (1962), Shaping the world economy, New York: The Twentieth Century Fund.
WALRAS L. (1874 / 1954), Elements of pure economics, Homewood: Irwin (translated by Jaffe W.).

WESSELINK E. and BOSCHMA R. (2012a), Overview of the European Neighborhood Policy: Its history, structure and implemented policy measures, SEARCH Working Paper, 1/04.
ZIPF G. K. (1946), The P1P2/D hypothesis: On the inter-city movement of persons, American Sociological Review, 11(6): 677-686.

## Abbreviations

ALG = Algeria
ARM = Armenia
AUT = Austria
AZE = Azerbaijan
$B E L=$ Belgium
BLR = Belarus
BUL = Bulgaria
CYP = Cyprus
CZE = Czech Republic

DEN = Denmark
DK Index = Index of Domination (Kyriarxia) in an international trade relation
EGY = Egypt
ENP = European Neighborhood Policy
ESP = Spain
EST = Estonia
EU = European Union
FIN = Finland
FRA = France
GDP = Gross Domestic Products
GEO = Georgia
GER = Germany
GRE = Greece
HUN = Hungary
IRL = Ireland
ISR = Israel
ITA = Italy
JOR = Jordan
LAT = Latvia
LEB = Lebanon
LIB = Libya
LIT = Lithuania
LUX = Luxemburg
MAL = Malta
MD = a country under consideration dominates over a partner country, concerning imports flows
$\mathrm{Md}=$ a country under consideration is dominated by a partner country, concerning imports flows
MOL = Moldova
MOR = Morocco
$\mathrm{n} / \mathrm{a}=$ not available
NED = Netherlands
PAL = Palestine
POL = Poland
POR = Portugal
ROM = Romania
SLK = Slovakia
SLN = Slovenia
SYR = Syria
SWE = Sweden
TUN = Tunisia
UK = United Kingdom
UKR = Ukraine
XD = a country under consideration dominates over a partner country, concerning exports flows
$\mathrm{Xd}=$ a country under consideration is dominated by a partner country, concerning exports flows
\$ = dollars (of the United States of America)

## Appendix

Table A1：The DK Index：Exports＇（from the ENP countries to the EU countries） domination conditions

| XD or Xd （with $E U$ ） | 2000 |  | 2001 |  | 2002 |  | 2003 |  | 2004 |  | 2005 |  | 2006 |  | 2007 |  | 2008 |  | 2009 |  | 2010 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ALG | XD | SLN | XD | LAT | XD | LAT | XD |  | XD |  | XD | SLN | XD |  | XD |  | XD |  | XD | LAT | XD | SLAT |
|  | xd | AUTI BEL GER UK | Xd | $\begin{gathered} \text { AUE } \\ \text { BEL } \\ \text { GER } \\ \text { ITA } \\ \text { POR } \\ \hline \text { UK } \end{gathered}$ | Xd | $\begin{gathered} \\ \hline \text { GEB } \\ \text { POR } \\ \text { POR } \\ \text { UK } \end{gathered}$ | X ${ }^{\text {d }}$ | $\begin{gathered} \text { GER } \\ \text { NED } \\ \text { UK } \end{gathered}$ | Xd | $\begin{aligned} & \text { GER } \\ & \text { NED } \\ & \text { UK } \end{aligned}$ | Xd | $\begin{aligned} & \text { GEB } \\ & \text { TITA } \\ & \text { UK } \end{aligned}$ | X $\times$ | CER | Xd | BEE GER TIA UK | Xd | $\begin{gathered} \text { Bie } \\ \text { GER } \\ \text { GER } \\ \text { TTA } \\ \text { UK } \end{gathered}$ | X X | $\begin{gathered} \text { BEE BE } \\ \text { GER } \\ \text { UK } \end{gathered}$ | Xd | GER <br> POR <br> UK |
| ARM |  | BEEL GER TA LIT NED |  | $\begin{gathered} \text { BEE } \\ \text { GER } \\ \text { ITA } \\ \text { LIT } \\ \text { NED } \\ \text { SN } \end{gathered}$ |  | $\begin{gathered} \text { BEE } \\ \text { GER } \\ \text { TTA } \end{gathered}$ | $\frac{x 0}{x d}$ | $\begin{gathered} \text { BEL } \\ \text { BUL } \\ \text { GER } \\ \text { TA } \\ \text { NED } \\ \text { UK } \end{gathered}$ | $\frac{x \mathrm{D}}{\mathrm{xd}}$ | BEEL BUL BSP GER ITA NED ROM | $\frac{x \mathrm{xD}}{\mathrm{xd}}$ | BE BEP FIN GER IT NED POL ROM | $\frac{x 0}{x d}$ | BEE BUL BZE CZP EST FIN GER ITA NED POL ROM | $\frac{\mathrm{xD}}{\mathrm{xd}}$ | AUT BEL BUL CZE ESP GER TA NED POL ROM | $x \mathrm{xd}$ | AUT AUE BEL BUE CZE ESP FRA GER TA NED POL ROM | ＂x0 | BEE BEL BUL ESP FRA GER TA NED ROM |  | IBEL BEE ERA GER IA NED ROM |
| AZE | $\begin{aligned} & x 0 \\ & \times x_{0} \\ & \hline x_{d} \end{aligned}$ | AUT FRA GER ITA UK | $\frac{\mathrm{xD}}{\mathrm{xD}_{\mathrm{d}}}$ | AUT FRA GER GRE ITA | －$\times$ x $\times$ | AUT ESP FRA GER ITA | $\begin{gathered} x_{00} \\ x_{d} \end{gathered}$ | $\begin{aligned} & \text { AUT } \\ & \text { FRA } \\ & \text { GER } \\ & \text { GRE } \\ & 1 T A \end{aligned}$ | $\begin{gathered} \times 0 \\ \times 0 \\ \times 0 \end{gathered}$ | AUT FRA GER GRE ITA | $\frac{\mathrm{xD}}{\frac{\mathrm{xd}}{20}}$ |  |  | n／a |  | n／a |  | n／a | $\frac{x 0}{x 0}$ |  | －$\times 1$ |  |
| BLR | $x_{x} \times x_{0}$ |  | $\begin{gathered} x \\ x \mathrm{xd} \\ \hline \end{gathered}$ |  |  |  |  | BEI． BEL ERP FRA GER HUN TA NED UK |  | B－ BEI ESP GRA GER HUN ITA NED UK |  | DEN DEN ESP GRA GER HUN ITA NED UK |  | CZE DEN FRA GER ITA ROM UK | $\times$ | $\begin{aligned} & \text { DEN } \\ & \text { GRA } \\ & \text { GEN } \\ & \text { UTA } \\ & \text { UK } \end{aligned}$ |  | $\begin{aligned} & \text { DEN } \\ & \text { FNN } \\ & \text { FRA } \\ & \text { GRE } \\ & \text { ITA } \end{aligned}$ | $\begin{gathered} x \mathrm{xO} \\ \times \mathrm{xd} \\ \hline \end{gathered}$ | $\begin{gathered} \text { FGA } \\ \text { GER } \\ \text { UK } \end{gathered}$ |  | $\begin{gathered} \text { GER } \\ \text { POL } \\ \text { UK } \end{gathered}$ |
| EGY |  | n＇a |  | n／a |  | CYP | XD | CTMP | X $\times$ D ${ }^{\text {＂}}$ | CYP |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | xd | BEL ESP FRA GER NED ROM UK UK | xd | BEL ESP ERA GER TA NED | Xd | BEL FRA GER NED |
| GEO | $\frac{x_{0}}{x=}$ |  | $\frac{\times \mathrm{xD}}{\mathrm{xd}}$ | BEL BUL BUL ESP FRA GER GRE IRL TAA MAL NED UK | $\frac{\mathrm{x} 0}{\times x_{d}}$ | BEEE EEEP FRA GER GRE TA NED ROM SLN UK |  | AUV． AUT BEL BUL CYP ESP FRA GER GRE TIA NED SLN UK |  | AU． AU． BEL BUL CYP ESP FRA GER GRE ITA NED POR SLN UK |  | BEEL BEL CYP ESP FRA GER GRE TA NED ROM UK |  | BEE BUL CZE ESP FIN FRA GER GRE TA IT NED POR ROM UK | $\times \overline{x d}$ | BEL BUL CZE CYP ESP FIN FRA GER GRE IRL ITA NED POL UK | $\frac{\times 0 .}{x d}$ | BEI CZE CZE ERP GRA GRE GRE ITA LTI NED POL SLN UK | $\begin{aligned} & x \mathrm{xD} \\ & \times \mathrm{xd} \\ & \hline \end{aligned}$ | AUT BEL CEL CYP ESP FRA GER GRE TA IIT MAL NED POL ROM SLN UK | $\frac{\mathrm{xd}}{\mathrm{xd}} \underset{\mathrm{xd}}{ }$ | AUT． AUE CZE ESP FRA GER GRE ITA LT NED POL ROM SWE UK |
| ISR | XD | $\begin{gathered} \text { CYP } \\ \text { GRE } \\ \text { ROM } \\ \text { SLN } \end{gathered}$ | XD | MȦL | Х̄D | M MAL | X XD |  | XD | R⿴囗才 | XD＇ | ROM | ХD |  | XD | MȦL | XD |  | XD＇ |  | XD ${ }^{\text {® }}$ | Stin |
|  | xd | $\begin{gathered} \text { SLN } \\ \begin{array}{c} \text { ESPP } \\ \text { FRA } \\ \text { GER } \\ \text { ITA } \\ \text { NED } \\ \text { UK } \end{array} \end{gathered}$ | 㸚 |  | xd | GESP FRA GER GRE TA NED UK | XX | EESP FRA GER GRE TA NED UK | X ${ }^{\text {d }}$ | ESPB FRA GER GRE TA NED UK | Xd | Mene | xd | ESP ERP GER GER ITA NED POL UK | X X | ESPP FRA GER GRE TA NED PED POL UK | ${ }^{1} \times$ | ESP FRP GER GEA NEA PED POL UK | Xd | ESPP FRA GER GRE TA NED PED POL UK U | Xd | ESPE ERA GER ITA NED POL UK |
| JOR | $\frac{\mathrm{xD}}{\times \mathrm{xd}}$ |  | $\begin{aligned} & x \mathrm{x} \\ & \times \mathrm{xd} \end{aligned}$ | $\begin{gathered} \text { EESP } \\ \text { GR } \\ \text { GERD } \\ \text { NEDK } \end{gathered}$ | $\frac{\mathrm{xD} 0}{\frac{\mathrm{x}}{\mathrm{xd}}}$ | $\begin{aligned} & \text { Gew } \\ & \text { NED } \\ & \text { UKE } \end{aligned}$ | $\begin{array}{r} \mathrm{xD} 0 \\ \times \mathrm{xda} \end{array}$ | $\begin{gathered} \text { GEP } \\ \text { GER } \\ \text { NED } \\ \text { UKD } \end{gathered}$ | $\begin{aligned} & \times 0 \\ & \times 0 \\ & \times 0 \end{aligned}$ | BUiL ESP GER ITA NED POL UK | $\frac{\mathrm{xD}}{\mathrm{xd}}$ | E．E． ITA GER NED UK | $\begin{gathered} \times 0 . \\ x_{d} \\ \hline \end{gathered}$ | $\begin{aligned} & \text { E.EPT } \\ & \text { TAA } \\ & \text { NED } \\ & \text { UK } \end{aligned}$ |  | $\begin{gathered} \text { GER } \\ \text { ITA } \\ \text { NED } \\ \text { UK } \end{gathered}$ | $\begin{gathered} \mathrm{xD} \\ \times \mathrm{xd} \\ \hline 0 \end{gathered}$ | $\begin{gathered} \text { Esp } \\ \text { TTA } \\ \text { NED } \end{gathered}$ | x00 | $\begin{aligned} & \text { GEB } \\ & \text { NA } \\ & \text { NED } \end{aligned}$ | ${ }_{\text {－}}^{\times \mathrm{xD}}$ | $\begin{aligned} & -T i T A \\ & N \in D \end{aligned}$ |
| LEB | $\frac{x 0}{x d}$ |  | $\begin{array}{ll} x \mathrm{x} \\ \times \mathrm{d} \\ \hline \end{array}$ | BEE CYP CYP FRP GER GRE TA NED UK | $\begin{gathered} \times \mathrm{xD} \\ \times \mathrm{xd} \end{gathered}$ | $\begin{aligned} & \text { BEE } \\ & \text { BYP } \\ & \text { CEPP } \\ & \text { ERA } \\ & \text { GER } \\ & \text { GRE } \\ & \text { TAA } \\ & \text { NED } \\ & \text { UK } \end{aligned}$ | $\begin{aligned} & x 0 \\ & \times \mathrm{x} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { BEE } \\ & \text { CYP } \\ & \text { ESP } \\ & \text { FRA } \\ & \text { GER } \\ & \text { GRE } \\ & \text { TAA } \\ & \text { NED } \\ & \text { UK } \end{aligned}$ | $\frac{x 0}{x}$ |  | $\frac{x D}{x d}$ | BEL BYP CYP FRA GER GRE IA NND POL SWE UK | $\frac{\times \mathrm{x}}{\frac{\mathrm{xd}}{\mathrm{x}}}$ | $\begin{aligned} & \text { BEE } \\ & \text { CYP } \\ & \text { EFP } \\ & \text { FRA } \\ & \text { GER } \\ & \text { GRE } \\ & \text { TAE } \\ & \text { NED } \\ & \text { POL } \\ & \text { UK } \end{aligned}$ | $\frac{\times 0}{x 0}$ | BEE CYP FRA GER GRE ITA NED POL UK | －$\times$ | BEE CYP ESP GRA GER GRE ITA NED UK | $\frac{\times 0}{\times 0}$ | BEI CYP ESP FRA GRA GER TA UK | ¢ $\times 1$ | BELE ESP FRA GER GRE TA NED UK |
| LIB |  | n／a | $\frac{x 0}{x d}$ | MRA | xd | $\begin{aligned} & \mathrm{MMAL} \\ & \hdashline \mathrm{AHT} \\ & \text { NED } \\ & \text { UK } \end{aligned}$ | xd | MAL－ AUT GER NED UK | ¢ ${ }_{\text {xd }}^{\text {xd }}$ | Cor |
| MOL | $\frac{\mathrm{xD}}{\mathrm{xd}}$ | AUT BEL CYP ESP FRA GER GRE HUN ITA | X00 | AUT BEL CYP ESP FRA GER GRE HUN ITA | xdod | AUUT BEL BEL ESP FRA GER GRE TA LIT | ${ }^{\times \mathrm{XD}} \mathrm{C}$ | AUT AEL BU CYP ESP GRA GER GRE TIA | ${ }^{\times 10}$ | AUT BE BU BYP GSP FRA GGR GRE HUN | X0 ${ }^{\text {X0 }}$ | AUT AUE BEL BYP FRA GRA GRE HUN HTA | $\frac{\mathrm{xD}}{\mathrm{x}_{\mathrm{d}}}$ | AUU BEL BU CEZ GSP GRA GGR GRE HUN | xd | AUT AEL BU CZE CYP GRA GGR GRE HUN | x00 | AUT BUL CCE CPP GRA GRR GRE HUN TTA | X0 | AUT BEL BU BEE GRA GRR GRE ITA LIT | X0 | AUT BUL CZE FRA GER GRE ITA LT NED NED |



Source: UN COMTRADE Database / Authors' Elaboration

Table A2: The DK Index: Imports' (from the EU countries to the ENP countries) domination conditions


| LEB | MD |  | MD | $\mathrm{CrPa}^{\text {cher }}$ | M̄О | $\mathrm{CrPa}^{\text {a }}$ | MD | CYP | MÖ | $\mathrm{CrPa}^{\text {che }}$ | M M " | $\mathrm{CrOP}^{\text {cher }}$ | M MD |  | MD | $\mathrm{CrPa}^{\text {che }}$ | M̄О | CYP. | MD | $\mathrm{CrPa}^{\text {che }}$ | MD | $\mathrm{CryP}^{\text {Cup }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Md | BEL |
|  |  |  |  | ESP |  | DEN |  | DEN |  | DEN |  | DEN |  | BUL |  | BUL |  | BUL |  | DEN |  | DEN |
|  |  |  |  | FRA |  | ESP |  | ESP |  | ESP |  | ESP |  | DEN |  | DEN |  | FRA |  | ERP |  | ESP |
|  |  |  |  | $\underset{\text { Ger }}{\text { Rem }}$ |  | $\underset{\text { FRA }}{\text { FRA }}$ |  | ${ }_{\text {GRA }}^{\text {GRA }}$ |  | FRA |  | FRA |  | ${ }_{\text {FRA }}$ |  | EIN |  | GER |  | GER |  | GER |
|  |  |  |  | ITA |  | GER |  | GRE |  | GER |  | GER |  | GER |  | FRA |  | ITA |  | ITA |  | ITA |
|  |  |  |  | NED |  | GRE |  |  |  | HUN |  | GRE |  | ITA |  | GER |  | NED |  | NED |  | NED |
|  |  |  |  | UK |  | ${ }_{\text {IRL }}$ |  | ITA |  | ITA |  | ITA |  | NED |  | GRE |  | ROM |  | ROM |  | ROM |
|  |  |  |  |  |  | -1TA |  | NED ROM |  | NED |  | NED |  | ROM |  | ITA |  | UK |  | UK |  | UK |
|  |  |  |  |  |  | NED |  | ROM SWE |  | ROM |  |  |  |  |  | NED ROM |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  | SWE |  |  |  |  |  | ROM |  |  |  |  |  |  |
| LIB | n/a |  | $\begin{gathered} \text { MD } \\ \text { Md } \\ \hline \end{gathered}$ |  | $\begin{gathered} \text { MD } \\ \text { Md } \end{gathered}$ |  | MD |  | $\begin{gathered} \mathrm{MD} \\ \mathrm{Md} \\ \hline \end{gathered}$ | CYI. <br> AUT <br> BEL <br> ESP <br> FRA <br> GER <br> NED <br> SWE <br> UK |
|  |  |  | aut | MAL |  |  | ${ }^{\text {CMP }}$ |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | BEL | BEL |  |  | BEL |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | EsP | ESP |  |  | CZE |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | FRA | FRA |  |  | ESP |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | $\underset{\text { Ger }}{\text { TTA }}$ | GER |  |  | ${ }_{\text {GRA }}^{\text {GR }}$ |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | NED | SLN |  |  | NED |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | SWE | SWE |  |  | SWE |  |  |  |  |  |  |  |  |  |  |  |
| MOL | $\frac{\mathrm{MD}}{\mathrm{Md}}$ |  |  |  | $\frac{\mathrm{MD}}{\mathrm{Md}}$ |  |  |  | $\frac{\text { Mí }}{\text { Má }}$ |  | $\frac{\mathrm{MD}}{\mathrm{Md}}$ |  | MD |  |  | $\frac{\mathrm{MD}}{\mathrm{Md}}$ |  |  |  | $\frac{\mathrm{MD}}{\mathrm{Md}}$ | AUT |  | AUT | AUTH | AUT | M M ${ }_{\text {Md }}$ |
|  |  | AUTT |  |  | AUTIT | AÜT |  |  | AUUT | Md |  | AUTT | ${ }^{\text {äut }}$ | Md | Md |  | $\frac{\mathrm{MD}}{\mathrm{Md}} .$ | AUT |  |  |  |  |  |  |  |  |
|  |  | BEL |  |  | BEL | BEL |  |  | BEL |  |  | bel | BEL |  |  |  |  | bEL | bEL |  | bEL | BEL |  |  |  |  |
|  |  | BUL |  |  | BUL | BUL |  |  | BUL |  |  | BUL | BUL |  |  |  |  | BUL | BUL |  | BUL | BULCZEESP |  |  |  |  |
|  |  | CZE |  |  | CZE | CZE |  |  | CZE |  |  | CZE | CZE |  |  |  |  | CZE | CZE |  | CZE |  |  |  |  |  |
|  |  | ESP |  |  | ESP | den |  |  | ESP |  |  | ESP | ESP |  |  |  |  | ESP | FRA |  | FRA |  | ¢ $\begin{gathered}\text { CZE } \\ \substack{\text { EPP } \\ \text { FRA }} \\ \text { CGR }\end{gathered}$ |  |  |  |
|  |  | FRA |  |  | FRA | ESP |  |  | FIN |  |  | Fin | FIN |  |  |  |  | FRA | GER |  | GER | FRA GER |  |  |  |  |
|  |  | GER | GER | FIN |  | FRA |  | FRA |  | FRA |  | GER | GRE |  |  |  |  | HUN |  |  | GER GRE |  |  |  |  |  |
|  |  | HUN | HUN | GER |  | GRE |  | HUN |  | HUN |  | HUN | ITA |  |  |  |  | LTT | GRE |  | HUN |  |  |  |  |  |
|  |  | ITA | ITA | GRE |  | HUN |  | ITA |  | ITA |  | ITA | LTI |  |  |  |  | NED | $\stackrel{\text { LTA }}{\text { LTT }}$ |  |  |  |  |  |  |  |
|  |  | LTT | LT | HUN |  | ITA |  | LAT |  | LTT |  | LIT | NED |  |  |  |  | POL |  |  |  |  |  |  |  |  |
|  |  | LUX | NED | ITA |  | LIT |  | LTT |  | NED |  | NED | POL |  |  |  |  | SLK | $\begin{aligned} & \text { NED } \\ & \text { POL } \\ & \text { SLK } \end{aligned}$ |  | $\underset{\substack{\text { LTT } \\ \text { NED }}}{ }$ |  |  |  |  |  |
|  |  | NED | POL | NED |  | NED |  | NED |  | POL |  | PoLk | SLK |  |  |  |  | UK |  |  | ( ${ }_{\text {POL }}^{\text {SLK }}$ |  |  |  |  |  |
|  |  | SLK SWE | SLN | POL |  | SLK |  | SLK |  | SLN |  | SLN |  |  |  |  |  |  | UK |  |  |  |  |  |  |  |
|  |  | SWE | UK | SLK |  | SLN |  | SLN |  | SWE |  | UK |  |  |  |  |  |  |  |  | UK |  |  |  |  |  |
|  |  | n/a |  | n'a |  | UK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| MOR |  |  |  |  |  | $\frac{\mathrm{MD}}{\mathrm{Md}}$ |  | MD |  |  | MD |  |  |  | n/a |  | n/a |  | MD ${ }_{\text {MD }}$ | LAT | $\frac{\text { MD }}{\text { Md }}$ | WMLMEEGERTIANEDSWEUK | M ${ }_{\text {MD }}^{\text {Md }}$ | BELGERITANEDROMSWEUKUK |  |  |
|  |  |  |  |  |  |  |  |  |  | Md ${ }^{\text {a }}$ | ${ }^{\text {BEIL }}$ |  |  |  |  | $\begin{gathered} \text { MD } \\ \text { Md } \\ \hline 1 \end{gathered}$ | NED | ${ }_{\text {BEL }} \mathrm{BL}$ |  |  |  |  |  |  |  |  |
|  |  |  |  | ¢ |  |  | ${ }_{\text {IRL }}^{\text {GER }}$ |  |  |  | GER |  |  |  |  |  | SWE | GIN |  |  |  |  |  |  |  |  |
|  |  |  |  | \|TA |  |  | \|TA |  |  |  | IRL |  |  |  |  |  | UK | TAA |  |  |  |  |  |  |  |  |
|  |  |  |  | NED POR cer |  |  | NED POR cer |  |  |  | NED |  |  |  |  |  |  | NED |  |  |  |  |  |  |  |  |
|  |  |  |  | UK |  |  | UK |  |  |  | SWE |  |  |  |  |  |  | UK |  |  |  |  |  |  |  |  |
| PAL |  | n/a |  |  | n/a |  |  |  |
| SYR | n/a |  | $\begin{gathered} \mathrm{MD} \\ \mathrm{Md} \\ \hline \end{gathered}$ |  |  | $\frac{M D}{M d}$ |  | $\frac{M 0}{M d}$ | CYP | $\begin{gathered} M D \\ M d \end{gathered}$ | CYPCEEEEPFSPFRAGERTEATEDSWEUK | $\frac{\mathrm{MD}}{\mathrm{Md}}$ | $\mathrm{CrO}^{\mathrm{Cr}}$ | $\frac{M D}{}$ | CYP. | MD | CYPBEEBEEFRPGERITANEDROMSWEUK | $\frac{\mathrm{MD}}{\mathrm{Md}}$ | CYPCYEBEPERPGRAIERNEDROMROMSWUK | n/a |  | n/a |  |  |  |  |
|  |  |  | AUT |  |  |  |  |  |  |  |  |  | BEL |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | BEL |  | BEL |  | BEL |  | BEL |  |  |  | ESP |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | ESP |  | ESP |  | ESP |  | FIN |  |  |  | GER |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | Fin | FIN | FIN |  | FRA |  | ITA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | FRA | FRA | FRA |  | GER |  | NED |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | GER | GER GRE | $\underset{\text { GER }}{\substack{\text { ITA }}}$ |  | HUN |  | ROM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | TTA | ITA | NED |  | NED |  | UK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | NED SWE | NED SWE | SWE |  | ROM SWE |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | SWE |  |  | UK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| TUN | $\frac{\text { mid }}{\text { Mid }}$ |  |  | $\begin{gathered} \text { мо } \\ \text { Md } \\ \hline \end{gathered}$ |  | $\begin{gathered} \text { Mid } \\ \text { Md } \end{gathered}$ | CTYP | MD |  | Mo |  | $\frac{\mathrm{MD}}{\mathrm{Md}}$ | MAL | $\frac{\mathrm{MD}}{\mathrm{Md}}$ |  | Mवd | AUIBELEEPGERNEDSWEUK | мі" | MAILMELESPGERNEDSWEUK | $\frac{\mathrm{MD}}{\mathrm{Md}}$ | MAAL | $\frac{\mathrm{MD}}{\mathrm{Md}}$ | BE.BEI....ESPGERNEDPORSWEUK |  |  |  |
|  |  |  |  |  | BEL |  | BEL ESP |  | BEL |  | BEL |  | BEL |  | BEEL |  |  |  |  |  | BEL ESP |  |  |  |  |  |
|  |  | FIN |  |  | GER |  | GER |  | FIN |  | FIN |  | GER |  | GER |  |  |  |  |  | GER |  |  |  |  |  |
|  |  | GER |  |  | NED |  | NED |  | GER |  | GER |  | NED |  | NED |  |  |  |  |  | NED |  |  |  |  |  |
|  |  | GRE NED |  |  | SWE |  | SWE |  | NED SWE |  | NED |  | SWE |  | SWE |  |  |  |  |  | POR ROM |  |  |  |  |  |
|  |  | SWE |  |  |  |  |  |  | SWE |  | SWE |  |  |  |  |  |  |  |  |  | SWE |  |  |  |  |  |
|  |  | UK |  |  |  |  |  |  |  |  | UK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| UKR |  | n/a |  | MD | CYP | MD | CUP | MD | ${ }_{\text {BUL }}^{\text {LAT }}$ | MD | EST | MD | EST | MD | ${ }_{\text {EST }}$ | MD | BUL | MD ${ }^{\text {¹ }}$ | ${ }_{\text {CYP }}^{\text {BUil }}$ | MD | $\begin{aligned} & \text { BiU } \\ & \text { EST } \\ & \text { LLT } \end{aligned}$ | MD | BuilCYPCSTLSTLATSLN |  |  |  |
|  |  |  |  |  | SLN |  | GRE |  | SLN |  | LAT |  | LAT |  | LAT |  | EST |  | EST |  |  |  |  |  |  |  |
|  |  |  |  |  | LAT |  |  |  |  | SLN | ROM |  | SLN |  | GRE |  | GRE |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | SLN |  |  |  |  |  | SLN |  |  |  | LAT |  | LAT |  |  |  |  |  |  |  |  |  |
|  |  |  | Md | ${ }_{\text {BEL }}^{\text {Aut }}$ | Md | ${ }_{\text {AEL }}^{\text {AUE }}$ | Md | ${ }_{\text {AEL }}^{\text {AUE }}$ | Md | ${ }_{\text {BEL }}^{\text {AUT }}$ | Md | ${ }_{\text {BEL }}^{\text {AUT }}$ | Md | BEE | Md | BELBSPFRANEDSWEUK | мव | $\begin{aligned} & \text { BEL } \\ & \text { ERP } \\ & \text { FRA } \\ & \text { SWE } \\ & \text { UWE } \end{aligned}$ | Md | BEL <br> ESP <br> FRA <br> GRE <br> ITA <br> NED <br> SWE <br> UK <br>  <br>  | Md | $\begin{gathered} \text { BEE } \\ \text { ERP } \\ \text { GRA } \\ \text { GRA } \\ \text { NAD } \\ \text { UK } \end{gathered}$ |  |  |  |  |
|  |  |  |  | DEN |  | ESP |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | ESP |  | FRA |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | FRA |  | FRA |  | FRA |  | GER |  | GER |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | GER |  | GER |  | GER |  | ITA |  | ITA |  | SWE |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | NTA |  | NTA |  | NTA |  | NED |  | NED SWE |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | SWE |  | SWE |  | SWE |  | UK |  | UK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Source: UN COMTRADE Database / Authors' Elaboration
Table A3: Exports' (from the ENP countries to the EU countries) domination conditions (year 2000)

|  | AUT | BEL | BUL | CZE | CYP | DEN | ESP | EST | FIN | FRA | GER | GRE | HUN | IRL | ITA | LAT | LIT | LUX | MAL | NED | POL | POR | ROM | SLK | SLN | SWE | UK |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ALG |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ARM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AZE |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| BLR |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| EGY | n/a |
| GEO |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ISR |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| JOR |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| LEB |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| LIB | n/a |
| MOL |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| MOR | n/a | $\mathrm{n} / \mathrm{a}$ |
| PAL | n/a | $\mathrm{n} / \mathrm{a}$ | n/a |
| SYR | n/a |
| TUN |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| UKR | n/a |
|  | count | $c$ (i.e | NP) do | ates | coun | $p$ | e. EU) |  | neutra | ation |  |  |  | coun | $c$ | e. ENP) is | domin | d by co | try $p$ | (.e. EU) |  |  |  |  |  |  |  |

Table A4: Exports' (from the ENP countries to the EU countries) domination conditions (year 2010)

|  | AUT | BEL | BUL | CZE | CYP | DEN | ESP | EST | FIN | FRA | GER | GRE | HUN | IRL | ITA | LAT | LT | LUX | MAL | NED | POL | POR | ROM | SLK | SLN | SWE | UK |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ALG |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ARM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AZE |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| BLR |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| EGY |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| GEO |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ISR |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| JOR |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| LEB |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| LIB |  |  |  |  |  |  |  |  |  |  |  | 프N |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| MOL |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| MOR |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| PAL | n/a |
| SYR | n/a |
| TUN |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| UKR |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | countr | $C$ (i.e | ENP) do | inates | er coun | $p$ | e. EU ) |  | neutral | elation |  |  |  |  | ry $C$ | e. ENP) | domin | d by co | try $p$ | (i.e. EU) |  |  |  |  |  |  |  |

Table A5: Imports' (from the EU countries to the ENP countries) domination conditions (year 2000)

|  | AUT | beL | BUL | CZE | CYP | DEN | ESP | EST | FIN | FRA | GER | GRE | HUN | IRL | ITA | LAT | LIT | LUX | MAL | NED | POL | POR | ROM | SLK | SLN | SWE | UK |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ALG |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ARM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AZE |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| BLR |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| EGY | n/a |
| GEO |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ISR |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| JOR |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| LEB |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| LIB | n/a |
| MOL |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| MOR | n/a |
| PAL | n/a | $\mathrm{n} / \mathrm{a}$ | n/a |
| SYR | n/a |
| TUN |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| UKR | n/a |
|  | countr | $C$ (i.e. | ENP) do | inates 0 | er coun | $p$ (i) | EU) |  | neutra | elation |  |  |  | coun | r $c$ | . ENP) is | domina | d by cou | try $p$ | .e. EU$)$ |  |  |  |  |  |  |  |

Source: UN COMTRADE Database / Author's Elaboration
Table A6: Imports' (from the EU countries to the ENP countries) domination conditions (year 2010)

|  | AUT | BEL | BUL | CZE | CYP | DEN | ESP | EST | FIN | FRA | GER | GRE | HUN | IRL | ITA | LAT | LIT | LUX | MAL | NED | POL | POR | ROM | stK | SLN | SWE | UK |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ALG |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ARM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AZE |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| BLR |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| EGY |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| GEO |  |  |  |  | - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ISR |  |  |  |  | , |  |  |  |  |  |  | - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| JOR |  |  |  |  | - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| LEB |  |  |  |  | - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| LIB |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| MOL |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| MOR |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| PAL | n/a | $\mathrm{n} / \mathrm{a}$ | n/a |
| SYR | n/a | n/a | n/a | $\mathrm{n} / \mathrm{a}$ | n/a |
| TUN |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| UKR |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | countrir | $C$ (i.e. | ENP) do | inates 0 | er count | $p$ (i. | EU) |  | neutral | elation |  |  |  |  | ry $C$ | . ENP) is | domina | d by co | try $p$ | e. EU) |  |  |  |  |  |  |  |


[^0]:    Department of Planning and Regional Development, School of Engineering, University of Thessaly Pedion Areos, 38334 Volos, Greece, Tel: +302421074462, e-mail: regiolab@prd.uth.gr, http://www.prd.uth.gr Available online at: http://www.prd.uth.gr/discussionpaper/2012-3/

[^1]:    ${ }^{1}$ Even though the "Law of Universal Gravitation" has been superseded by the "Theory of General Relativity", formulated by Einstein (1916), it continues to be used as an approximation of the gravity effects.
    ${ }^{2}$ Prior to the "official" formulation of the gravity model, Ravenstein (1885), Zipf (1946) and Pöyhönen (1963) seem to follow the gravity approach in their studies. The first two studies concern migration, whereas the last one concerns trade.

[^2]:    ${ }^{3}$ The name of the index comes from the English word "domination" and the synonymous Greek word "кupıapxía" ("kyriarxia").
    ${ }^{4}$ The ENP, launched in 2004, is a unified EU policy framework towards the EU neighboring countries (i.e. the ENP countries). The objective of the ENP is to strengthen the prosperity, stability and security of the (enlarged) EU countries and the ENP countries (see Wesselink and Boschma, 2012 for an overview of the ENP).
    ${ }^{5}$ Popularized by Taaffe and Gauthier (1973).
    ${ }^{6}$ Even though the focus of the studies is on telephone calls.

[^3]:    ${ }^{7}$ See FP7-SHS-2007-1, EuroBroadMap: Visions of Europe in the World for details.

[^4]:    ${ }^{8}$ The ENP framework is proposed - in alphabetical order - to Algeria, Armenia, Azerbaijan, Belarus, Egypt, Georgia, Israel, Jordan, Lebanon, Libya, Moldova, Morocco, Occupied Palestinian Territory (hereinafter: Palestine), Syria, Tunisia and Ukraine. The ENP is a bilateral policy, between the EU and each ENP country.
    ${ }^{9}$ See http://comtrade.un.org/db/ for details.

[^5]:    ${ }^{10}$ See Beauguitte, 2011 and Grasland, 2011 for (more) sophisticated methods for the visualization of the results derived from DK-like indicators.

